Content Clusters - Stage 2

Scope and sequencing by conceptual understanding

This is the scope... you create the sequence.
In this resource I provide possible ways of how groups of outcomes and their key ideas can be sequenced together based on the concepts they address. These are just examples and is not an exhaustive list of the clusters you can use to make connections across mathematics. I have used
 the syllabus outcomes, sub strands and the mathematics key ideas document. When teaching for conceptual understanding (not just the knowledge of each sub strand) we need to make clear how the pieces of the mathematical puzzle fit together. To do this, our planning needs to reflect this belief - that mathematics is a complex web of interrelated ideas. For ideas on what these links are, see my Linkages across the syllabus document on the resources section of our website.

The scope of what we teach is described in the syllabus (this is the constant), the sequence of what and how we teach mathematics is a decision for individual teachers (this is the variable). These clusters can be used to create meaningful sequences of learning that focus on concepts and programs that still address common sub strands (across grades or classes) but allow for individual teachers to add additional key ideas or focus on specific aspects of the cluster that students either have misconceptions around or are developing conceptual understanding in. The clusters are numbered but are not written in teaching order. These clusters may be added to or updated in the future and newer versions will be released.

Primary Learning

These clusters highlight the concept or main idea that ties each group of outcomes together, assisting teachers in making sense and meaning of the mathematics to students. When we think about the concepts or understandings first, we can think about what misconceptions students may have or what aspects of that concept they need next to connect their prior knowledge (the known) to create new knowledge (the unknown). The image to the right sourced from NZMaths, is based on Pirie and Kieren's growth in understanding model of the 'back and forth' nature of how students develop understanding from the known to the unknown.

A (scope and) sequence should:

- reflect the conceptual needs of your students at this point in time (they need to be evaluated and changed constantly)
- show evidence of connections across sub strands
- address connected content strands that deal with similar concepts within a lesson or within a sequence of lessons (e.g. over a few weeks)
- give teachers an overarching structure to guide immediate planning
- where possible, be written to address the upcoming half- term or term teaching and learning cycle

NESA states that for their registration process as evidence of compliance schools need to provide "scope and sequence of learning/units of work in relation to outcomes of NESA syllabus for each KLA for each Year" (page 10). Note: Most schools have a set, wider grade or school-based scope and sequence, you can use the content clusters within those parameters to guide what conceptual understandings you focus on for your students. They show where you can make connections between the sub strands that are listed in the school's scope and sequence.

Primary

 Learning
Mind map of big ideas and smaller concept connections

To assist with how these clusters fit into the larger picture of mathematics, what many researchers refer to as 'Big ideas’ or important concepts (Askew, 2013; Boaler, 2017; Charles, 2005; Clarke, Clarke \& Sullivan, 2012; Hurst \& Hurrell, 2014; Siemon, Bleckly \& Neal, 2012; Tout \& Spithill, 2015), I had a go at thinking holistically about "What are the main concepts or 'knowledge actions' students need?" Here is my 'messy' thinking, then a more organised way of linking these ideas together are illustrated on the following pages.

Big ideas simplified

I then thought about these important concepts 'big ideas', the smaller 'knowledge actions' within them, and how the Content Clusters fit under each of these concepts, noting that some clusters align with more than one big idea.

Primary

Big ideas and smaller 'knowledge actions'

Partitioning	Pattern		Comparing		Structure

These are just my ideas, Charles (2005) in his paper recognises that in developing deeper understanding of big ideas it might be helpful for teachers to "decide to modify or build your own" (p. 11). He also stated that:
"In working with colleagues on the development of this paper I am rather certain that it is not possible to get one set of Big Ideas and Understandings that all mathematicians and mathematics educators can agree on. Fortunately, I do not think it's necessary to reach a consensus in this regard. Use the Big Mathematical Ideas and Understandings presented here as a starting point for the conversations they are intended to initiate" (p. 9)

Primary
 Learning

Organisation of Stage 2 clusters (updated)

In this update I have reduced the repetition of clusters and now simply have all the clusters included once (they are no longer repeated under substrand headings). Two additional clusters have been added related to time concepts (new - Clusters 19 and 20) which has resulted in the original Clusters 19 - 30 having their numbers changed to accommodate. A few clusters have been revised (Cluster 7 - previously 5, Cluster 25 - previously 23 , and 29 - previously 27) to add in other connections that have arisen. Where appropriate, clusters have been given the same or similar names as concepts from other Stages to help make connections, show concepts that develop, and to assist with multi-stage planning. This version also includes a visual overview of the clusters mapped to the NSW outcomes they address to assist with planning and programming. A list of cluster titles is also included so teachers can see 'at a glance' the types of concepts the clusters explore. There is no set time for how long each cluster may take to explore with students, it could be 2 weeks per cluster or 3-4 weeks. Clusters may be repeated, merged or omitted (please see these are examples). Decisions about how the clusters are arranged and implemented should be made by teachers at a school/grade/classroom level based on students' needs, abilities, and interests.

References

Askew, M. (2013). Big ideas in primary mathematics: Issues and directions. Perspectives in Education, 31(3), 5-18.
Charles, R. I., \& Carmel, C. A. (2005). Big ideas and understandings as the foundation for elementary and middle school mathematics. Journal of Mathematics Education, 7(3), 9-24.
Clarke, D. M., Clarke, D. J., \& Sullivan, P. (2012). Important ideas in mathematics: What are they and where do you get them? Australian Primary Mathematics Classroom, 17(3), 13.
Hurst, C., \& Hurrell, D. (2014). Developing the big ideas of number. International Journal of Educational Studies in Mathematics, 1(2), 1-18.
Mathematics K-10 Syllabus outcomes © NSW Education Standards Authority (NESA) for and on behalf of the Crown in right of the State of New South Wales, 2012.
Pirie, S., \& Kieren, T. (1994). Growth in mathematical understanding: How can we characterise it and how can we represent it? Educational Studies in Mathematics, 26(2/3), 165-190. doi:10.1007/BF01273662
Siemon, D., Bleckly, J., \& Neal, D. (2012). Working with the big ideas in number and the Australian Curriculum: Mathematics. 2012). Engaging the Australian National Curriculum: Mathematics-Perspectives from the Field. Online Publication: Mathematics Education Research Group of Australasia, 19-45.

Tout, D. \& Spithill, J. (2015). Big Ideas in Mathematics Teaching. The Research Digest, QCT, 2015 (11)
What is mathematical beauty Jo Boaler (Youcubed)

Primary
Learning

Clusters mapped to big ideas

Partitioning
-Content Cluster 2: Place value
-Content Cluster 7: Flexible
strategies for operating with
numbers
-Content Cluster 8: Partitioning
-Content Cluster 9: Money uses a
many-to-one scale
-Content Cluster 11: Number
relationships

Comparing

-Content Cluster 5: Comparing quantities - linear
-Content Cluster 6: Comparing quantities - area/volume -Content Cluster 10: The 'equals sign' means "the same as" sign means "the same as"
-Content Cluster 11: Number - Content Clus
-Content Cluster 18: Time can be measured
-Content Cluster 19: Duration can be calculated using units of time -Content Cluster 22: Benchmark numbers can be used to estimate quantities
-Content Cluster 23: Numbers and quantities can be compared using scale
-Content Cluster 24: Objects can be measured and compared -Content Cluster 25: Shapes can -Content Cluster 25: Shapes can -Content Cluster 27: Shapes and -Content Cluster 27: S
objects are classified
-Content Cluster 30: Information can be collected, represented ... -Content Cluster 32: Events can be predicted, measured

Structure

-Content Cluster 2: Place value -Content Cluster 3: Representing numbers
-Content Cluster 4: Number representations
-Content Cluster 6: Comparin quantities - area/volume - Content Cluster 8: Partitioning -Content Cluster 13: Patterns repeat or grow
-Content Cluster 14: Multiples can be visually represented as an array
-Content Cluster 15: The 'for
each' concept
-Content Cluster 21:
Measurements are
approximations
-Content Cluster 20: Time can be represented in multiple ways Content Cluster 26: Shape properties remain constant Content Cluster 31: Information can be presented visually

Relationships

-Content Cluster 2: Place value -Content Cluster 7: Flexible strategies for operating with numbers

- Content Cluster 9: Money uses a many-to-one scale
-Content Cluster 10: The 'equals sign' means "the same as" -Content Cluster 11: Number relationships
-Content Cluster 12: Numbers can be represented using pairs -Content Cluster 15: The 'for each' concept
-Content Cluster 16: A fraction is a number that represents a relationship
-Content Cluster 17: Fractions represent division
-Content Cluster 19: Duration can be calculated using units of time -Content Cluster 23: Numbers and quantities can be compared using scale
-Content Cluster 29: Locating and positioning is based on references

Primary

Learning

Stage 2 Overview of Content Clusters

Content Cluster 1: Flexible counting (any number can be a countable unit)
Content Cluster 2: Place value (numbers can be regrouped and renamed - partitioning)
Content Cluster 3: Representing numbers (numbers can be represented and ordered based on their place value)
Content Cluster 4: Number representations (numbers can be represented by words/language, images/drawings, numbers/symbols)
Content Cluster 5: Comparing quantities - linear focus (numbers can be compared based on size and place value)
Content Cluster 6: Comparing quantities - area/volume focus (numbers can be compared based on size and place value)
Content Cluster 7: Flexible strategies for operating with numbers (numbers can be partitioned to assist with computation)
Content Cluster 8: Partitioning: Part-whole number knowledge (numbers can be partitioned in multiple ways)
Content Cluster 9: Money uses a many-to-one scale
Content Cluster 10: The 'equals sign' means "the same as" (equality and inequality)
Content Cluster 11: Number relationships - converting (one thousand can be regrouped as 10 hundreds, 100 tens, or 1000 ones)
Content Cluster 12: Numbers can be represented using pairs to explore odd and even properties
Content Cluster 13: Patterns repeat or grow and future terms can be predicted (number structure)
Content Cluster 14: Multiples can be visually represented as an array (number structure)
Content Cluster 15: The 'for each' concept - for each of these (how many rows), there are some of those (how much in each row)
Content Cluster 16: A fraction is a number that represents a relationship between parts and the whole
Content Cluster 17: Fractions represent division (number relationships)
Content Cluster 18: Time can be measured in hours, minutes and seconds (links to fractional language)
Content Cluster 19: Duration can be calculated using units of time
Content Cluster 20: Time can be represented in multiple ways (e.g. calendars, timelines, timetables)
Content Cluster 21: Measurements are approximations and can be represented using formal units
Content Cluster 22: Benchmark numbers can be used to estimate quantities (how much/how many)

Primary

 Learning
Stage 2 Overview of Content Clusters cont.

Content Cluster 23: Numbers and quantities can be compared using scale (links to proportionality)
Content Cluster 24: Objects can be measured and compared through different representations
Content Cluster 25: Shapes can be measured and compared through different representations
Content Cluster 26: Shape properties remain constant even when they are moved or reorientated (transforming shapes)
Content Cluster 27: Shapes and objects are classified based on properties (comparing features)
Content Cluster 28: Patterns can be created using shapes (copying, rotating, translating and reflecting)
Content Cluster 29: Locating and positioning is based on references (to points or one's self)
Content Cluster 30: Information can be collected, represented and analysed using numbers (collecting data)
Content Cluster 31: Information can be presented visually to convey meaning (data representations)
Content Cluster 32: Events can be predicted, measured, and discussed based on chance

Stage 2 Content Cluster outcome mapping

						$6 \text { Comparing quantities - area/volume }$																										
Whole Number MA2-4NA																																
Addition \& Sub MA2-5NA																																
Multi \& Div MA2-6NA																																
Fractions \& Dec MA2-7NA																																
Pat \& Algebra MA2-8NA																																
Length MA2-9MG																																
$\begin{aligned} & \hline \text { Area } \\ & \text { MA2-10MG } \end{aligned}$																																
Vol \& Capacity MA2-11MG																																
Mass MA2-12MG																																
Time MA2-13MG																																
$\begin{aligned} & \text { 3D Space } \\ & \text { MA2-14MG } \end{aligned}$																																
$\begin{aligned} & \text { 2D Space } \\ & \text { MA2-15MG } \end{aligned}$																																
Angles MA2-16MG																																
Position MA2-17MG																																
$\begin{aligned} & \text { Data } \\ & \text { MA2-18SP } \\ & \hline \end{aligned}$																																
$\begin{aligned} & \hline \text { Chance } \\ & \text { MA2-19SP } \end{aligned}$																																

Page 10 of 24

Stage 2 Content Clusters

Content Cluster 1: Flexible counting (any number can be a countable unit)

Whole Numbers 1 MA2-4NA

Count forwards and backwards by tens
and hundreds from any starting point
Addition and Subtraction 1 MA2-5NA
Perform calculations with money, including
calculating equivalent amounts using different
denominations

Multiplication and Division 1 MA2-6NA Recall multiplication facts for twos, threes, fives and tens

Patterns and Algebra 1 MA2-8NA Identify, continue, create, describe and record increasing and decreasing number patterns

Content Cluster 2: Place value (numbers can be regrouped and renamed-partitioning)						
Whole Numbers 1 MA2-4NA	Whole Numbers 2 MA2-4NA	Addition and Subtraction 1 MA2-5NA				
State the place value of digits in						
numbers of up to four digits	State the place value of digits in numbers of up to five digits Record numbers of up to five digits using expanded notation	Use and record a range of mental strategies for addition and subtraction of two-, three- and four-digit numbers Use the formal written algorithm for addition and subtraction	Addition and Subtraction 2 MA2-5NA Use and record a range of mental strategies for addition and subtraction of two-, three-, four-and five-digit numbers			

Content Cluster 3: Representing numbers (numbers can be represented and ordered based on their place value)			
Whole Numbers 1 MA2-4NA Read, write and order numbers of up to four digits Whole Numbers 2 MA2-4NA Read, write and order numbers of up to five digits	Fractions and Decimals 1 MA2-7NA Model and represent fractions with denominators $2,3,4,5$ and 8 Count by halves, quarters and thirds, including with mixed numerals Represent fractions on number lines, including number lines that extend beyond 1	Fractions and Decimals 2 MA2-7NA Model and find equivalence between fractions with denominators 2,4 and 8 ; 3 and 6; and 5, 10 and 100 Apply the place value system to represent tenths and hundredths as decimals	Length 1 MA2-9MG Use metres, centimetres and millimetres to measure, compare, order and estimate lengths

Primary

 Learning
Stage 2 Content Clusters

Content Cluster 4: Number representations (numbers can be represented by words/language, images/drawings, numbers/symbols)

Whole Numbers 1 MA2-4NA

Read, write and order numbers of up to four digits

Whole Numbers 2 MA2-4NA
Read, write and order numbers of up to five digits

Addition and Subtraction 1 MA2-	Multiplication and Division 1 MA2-6NA
5NA	Recognise and use the symbols \times and \div
Model and apply the associative	Link multiplication and division using
property for addition	arrays
	Model and apply to commutative property for multiplication

Multiplication and Division 1 MA2-6NA
Recognise and use the symbols \times and \div Link multiplication and division using

Model and apply to commutative property for multiplication

Fractions and Decimals 1 MA2-7NA
Model and represent fractions with
denominators $2,3,4,5$ and 8
Fractions and Decimals 2 MA2-7NA
Model, compare and represent decimals
with one and two decimal places

Content Cluster 5: Comparing quantities - linear focus (numbers can be compared based on size and place value)

Primary

Learning

Stage 2 Content Clusters

Content Cluster 6: Comparing quantities - area/volume focus (numbers can be compared based on size and place value)			
Fractions and Decimals 2 MA2-7NA Make connections between fraction and decimal notation Model, compare and represent decimals with one and two decimal places	Area 1 MA2-10MG Use square centimetres and square metres to measure and estimate rectangular (and square) areas Area 2 MA2-10MG Measure and compare the areas of regular and irregular shapes using a square-centimetre grid Compare areas measured in square centimetres and square metres	Volume and Capacity 1 MA2-11MG Use cubic centimetres to measure and compare volumes Volume and Capacity 2 MA2-11MG Compare volumes of objects by submerging each in water	Mass 1 MA2-12MG Use kilograms to measure, compare, order and estimate masses Mass 2 MA2-12MG Use kilograms and grams to measure and compare masses using a scaled instrument

Content Cluster 7: Flexible strategies for operating with numbers (numbers can be partitioned to assist with computation)

Addition and Subtraction 1 MA2-5NA

Use and record a range of mental strategies for addition and subtraction of two-, three- and four-digit numbers Perform calculations with money, including calculating equivalent amounts using different denominations

Addition and Subtraction 2 MA2-5NA

Use and record a range of mental strategies for addition and subtraction of two-, three-, four-and five-digit numbers

[^0]
Primary Learning

Stage 2 Content Clusters

Content Cluster 8: Partitioning: Part-whole number knowledge (numbers can be partitioned in multiple ways)			
Fractions and Decimals 1 MA2-7NA Model and represent fractions with denominators $2,3,4,5$ and 8 Count by halves, quarters and thirds, including with mixed numerals	Fractions and Decimals 2 MA2-7NA Model and find equivalence between fractions with denominators 2, 4 and $8 ; 3$ and 6 ; and 5, 10 and 100 Model, compare and represent decimals with one and two decimal places	Multiplication and Division 2 MA26NA Use mental strategies and informal recording methods for division with remainders	Whole Numbers 2 MA2-4NA Record numbers of up to five digits using expanded notation

Content Cluster 9: Money uses a many-to-one scale

Addition and Subtraction 1 MA2-5NA

Perform calculations with money, including calculating equivalent amounts using different denominations

Addition and Subtraction 2 MA2-5NA

Solve word problems, including those involving money

Fractions and Decimals 2 MA2-

 7NAApply the place value system to
represent tenths and hundredths as decimals

Multiplication and Division 1 MA2-

6NA
Use mental strategies to multiply
one-digit numbers by multiples of 10

Whole Numbers 1 MA2-4NA
Count forwards and backwards by tens and hundreds from any starting point

Content Cluster 10: The 'equals sign' means "the same as" (equality and inequality)

Addition and Subtraction 1 MA2-5NA

Model and apply the associative property for addition

Use the equals sign to record equivalent number sentences
Addition and Subtraction 2 MA2-5NA
Use the inverse operation to check addition and subtraction calculations

Multiplication and Division 1 MA2-6NA
Recognise and use the symbols \times and \div
Model and apply to commutative property for multiplication

Multiplication and Division 2 MA2-6NA

Relate multiplication facts to their inverse division facts
Use the equals sign to record equivalent number relationships involving multiplication

Patterns and Algebra 2 MA2-8NA

Find missing numbers in number sentences involving addition or subtraction on one or both sides of the equals sign

Patterns and Algebra 2 MA2-8NA

Find missing numbers in number sentences involving one operation of multiplication or division

Fractions and Decimals 2

 MA2-7NAModel and find equivalence between fractions with denominators 2, 4 and 8;
3 and 6 ; and 5,10 and 100

Stage 2 Content Clusters

Content Cluster 11: Number relationships - converting (one thousand can be regrouped as 10 hundreds, 100 tens, or 1000 ones)				
Whole Numbers 2 MA24NA Record numbers of up to five digits using expanded notation	Length 1 MA2-9MG Use metres, centimetres and millimetres to measure, compare, order and estimate lengths Record lengths using the abbreviations m, cm and mm Length 2 MA2-9MG Convert between metres, centimetres and millimetres	Area 1 MA2-10MG Use square centimetres and square metres to measure and estimate rectangular (and square) areas Record lengths using the abbreviations cm_{2} and m_{2}	Volume and Capacity 2 MA2-11MG Use litres and millilitres to measure, compare and estimate capacities and volumes Record capacities and volumes using the abbreviations L and mL Convert between litres and millilitres	Mass 2 MA2-12MG Use kilograms and grams to measure and compare masses using a scaled instrument Record masses using the abbreviations kg and g

Content Cluster 12: Numbers can be represented using pairs to explore odd and even properties

Patterns and Algebra 1 MA2-8NA

Identify odd and even numbers of up to four digits

Patterns and Algebra 2 MA2-8NA

Investigate and use the properties of odd and even numbers
Recognise, continue and describe number patterns resulting from performing multiplication

Multiplication and Division 1 MA2-6NA
Link multiplication and division using arrays
Multiplication and Division 2 MA2-6NA
Recall and use multiplication facts up to 10×10 with automaticity
Relate multiplication facts to their inverse division facts
Determine multiples and factors of whole numbers

Primary

Learning

Stage 2 Content Clusters

Content Cluster 13: Patterns repeat or grow and future terms can be predicted (number structure)

Patterns and Algebra 1 MA2-8NA	Multiplication and	Fractions and Decimals 1	Whole Numbers 1 MA2-4NA	Two-Dimensional Space 2 MA2-
Identify, continue, create, describe	Division 1 M2-6NA	MA2-7NA	Count forwards and backwards by tens	15MG
and record increasing and	Recall multiplication	Count by halves, quarters	and hundreds from any starting point	Use transformations to create and
decreasing number patterns	facts for twos, threes,	and thirds, including with	Read, write and order numbers of up to	describe symmetrical designs
Patterns and Algebra 2 MA2-8NA	fives and tens	mixed numerals	four digits	Create and record tessellating
Recognise, continue and describe	Link multiplication and		Whole Numbers 2 MA2-4NA	designs
number patterns resulting from	division using arrays		five digits	
performing multiplication				

Content Cluster 14: Multiples can be visually represented as an array (number structure)				
Multiplication and Division 1 MA2-6NA Link multiplication and division using arrays Model and apply to commutative property for multiplication Use mental strategies to multiply one-digit numbers by multiples of 10	Multiplication and Division 2 MA2-6NA Relate multiplication facts to their inverse division facts Determine multiples and factors of whole numbers Use and record a range of mental and informal written strategies for multiplication and division of two-digit numbers by a one-digit operator Use mental strategies and informal recording methods for division with remainders	Area 1 MA2-10MG Use square centimetres and square metres to measure and estimate rectangular (and square) areas Area 2 MA2-10MG Measure and compare the areas of regular and irregular shapes using a square-centimetre grid	Volume and Capacity 1 MA2-11MG Use cubic centimetres to measure and compare volumes	Patterns and Algebra 2 MA2-8NA Recognise, continue and describe number patterns resulting from performing multiplication

Primary

Learning

Stage 2 Content Clusters

Content Cluster 15: The 'for each' concept - for each of these (how many rows), there are some of those (how much in each row)

Multiplication and Division 1 MA2-6NA	Multiplication and Division 2 MA2-6NA		
Link multiplication and division using arrays			
Model and apply to commutative property for multiplication		\quad	Determine multiples and factors of whole numbers
:---	\quad	Recognise, continue and describe number patterns	
:---			
resulting from performing multiplication			

Content Cluster 16: A fraction is a number that represents a relationship between parts and the whole			
Fractions and Decimals 1 MA2-7NA Count by halves, quarters and thirds, including with mixed numerals Represent fractions on number lines, including number lines that extend beyond 1	Fractions and Decimals 2 MA2-7NA Apply the place value system to represent tenths and hundredths as decimals Make connections between fraction and decimal notation Represent decimals on number lines	Angles 1 MA2-16MG Identify and describe angles as measures of turn	Whole Numbers 2 MA2-4NA Record numbers of up to five digits using expanded notation

Content Cluster 17: Fractions represent division (number relationships)			
Fractions and Decimals 1 MA2-	Fractions and Decimals 2 MA2-7NA	Multiplication and Division 1 MA2-6NA	Multiplication and Division 2 MA2-6NA
7NA	Model and find equivalence between	Recall multiplication facts for twos, threes,	Relate multiplication facts to their inverse
Model and represent fractions	fractions with denominators 2, 4 and 8;	fives and tens	
with denominators 2, 3, 4,5	3 and 6; and 5, 10 and 100	Link multiplication and division using arrays	Use mental strategies and informal recording and 8

Primary

Learning

Stage 2 Content Clusters

Content Cluster 18: Time can be measured in hours, minutes and seconds (links to fractional language)							
Time 1MA2-13MG	Time 2 MA2-13MG	Fractions and Decimals 1 MA2-7NA	Angles 1 MA2-16MG				
Recognise the coordinated movements of the hands on a clock Read and record time to the minute, using digital notation and the terms 'past' and 'to'	hours and days Use and interpret am and pm notation	Model and represent fractions with denominators 2, 3, 4, 5 and 8 8 Count by halves, quarters and thirds, including with mixed numerals	measures of turn Compare angle sizes in everyday situations				

Content Cluster 19: Duration can be calculated using units of time

Time 1MA2-13MG	Time 2 MA2-13MG	Addition and Subtraction 1 MA2-5NA	
Read and record time to the minute, using			
digital notation and the terms 'past' and 'to'	Convert between seconds, minutes, hours and days Use and interpret am and pm notation	Use and record a range of mental strategies for addition and subtraction of two-, three- and four-digit numbers	Use and record a range of mental and informal written strategies for multiplication and division of two-digit numbers by a one-digit operator

Content Cluster 20: Time can be represented in multiple ways (e.g. calendars, timelines, timetables)

Time 1MA2-13MG

Recognise the coordinated movements of the hands on a clock

Read and record time to the minute, using digital notation and the terms 'past' and 'to'

Time 2 MA2-13MG

Convert between seconds, minutes, hours and days

Use and interpret am and pm notation

Fractions and Decimals 1 MA2-7NA
Model and represent fractions with denominators $2,3,4,5$ and 8

Count by halves, quarters and thirds, including with mixed numerals

Whole Numbers 1 MA2-4NA

State the place value of digits in numbers of up to four digits

Read, write and order numbers of up to four digits

Stage 2 Content Clusters

Content Cluster 21: Measurements are approximations and can be represented using formal units

Length 1 MA2-9MG	Area 1 MA2-10MG	Volume and Capacity 1 MA2-11MG	Mass 1 MA2-12MG
Record lengths using the abbreviations m, cm and mm Length 2 MA2-9MG Select and use appropriate scaled instruments and units to measure and compare lengths Record temperatures using the symbol for degrees (${ }^{\circ}$)	Recognise the need for formal units to measure area Record lengths using the abbreviations cm 2 and m_{2}	Recognise the need for formal units to measure capacity and volume Record capacities and volumes using the abbreviations L and cm 3 Volume and Capacity 2 MA2-11MG Record capacities and volumes using the abbreviations L and mL	Recognise the need for formal units to measure mass Record masses using the abbreviation kg

Content Cluster 22: Benchmark numbers can be used to estimate quantities (how much/how many)			
Length 1 MA2-9MG Use metres, centimetres and millimetres to measure, compare, order and estimate lengths Length 2 MA2-9MG Estimate and measure perimeters of two-dimensional shapes	Area 1 MA2-10MG Use square centimetres and square metres to measure and estimate rectangular (and square) areas	Volume and Capacity 1 MA2-11MG Use litres to measure, compare and estimate capacities and volumes Volume and Capacity 2 MA2-11MG Use litres and millilitres to measure, compare and estimate capacities and volumes	Mass 1 MA2-12MG Use kilograms to measure, compare, order and estimate masses

Stage 2 Content Clusters

Content Cluster 23: Numbers and quantities can be compared using scale (links to proportionality)

Addition and Subtraction	Length 1 MA2-9MG	Position 1 MA2-17MG	Data 1 MA2-18SP	Time 2 MA2-13MG
1 MA2-5NA Use and record a range	Use metres, centimetres and millimetres to measure, compare,	Draw simple maps, with and without a grid	Collect data, organise into categories and create displays using lists, tables,	Read and interpret simple timetables,
of mental strategies	order and estimate lengths	Position 2 MA2-17MG	picture graphs and simple column	timelines and calendars
for addition and	Length 2 MA2-9MG	Interpret legends and directions on	graphs (one-to-one correspondence)	
subtraction of two-,	Convert between metres,	maps	Data 2 MA2-18SP	
three- and four-digit	centimetres and millimetres	Use the scale to calculate the	Construct data displays, including tables,	
numbers		distance between two points on maps	and column graphs and picture graphs of many-to-one correspondence	

Content Cluster 24: Objects can be measured and compared through different representations

Three-dimensional Space 1 MA2-
 14MG

Make models of three-dimensional
objects
Create nets from everyday packages

Three-Dimensional Space 2 MA2-14MG

Represent three-dimensional objects in drawings showing depth
Sketch three-dimensional objects from different views
Interpret and make drawings of objects on isometric grid paper

Volume and Capacity 1 MA2-11MG
Use cubic centimetres to
measure and compare
volumes

Multiplication and Division 2 MA2-6NA Use and record a range of mental and informal written strategies for multiplication and division of two-digit numbers by a one-digit operator

Primary Learning

Stage 2 Content Clusters

Content Cluster 25: Shapes can be measured and compared through different representations

Content Cluster 26: Shape properties remain constant even when they are moved or reorientated (transforming shapes)

Three-Dimensional Space 1	Three-Dimensional Space 2 MA2-14MG	Two-Dimensional Space 1 MA2-15MG	Two-Dimensional Space 2 MA2-15MG
MA2-14MG	Sketch three-dimensional objects from	Identify and name the special quadrilaterals presented	
In different orientations	Use transformations to create and		
Identify, describe and7compare	difent views		
features of prisms, pyramids,	Interpret and make drawings of objects		
cylinders, cones and spheres	on isometric grid paper	Identify and describe shapes as 'regular' or 'irregular' Describe and compare features of shapes, including the special quadrilaterals	Create and record tessellating designs

Primary

Learning

Stage 2 Content Clusters

Content Cluster 27: Shapes and objects are classified based on properties (comparing features)

Three-Dimensional Space 1 MA2-14MG	Two-Dimensional Space 1 MA2-15MG
Identify, describe and compare features	
of prisms, pyramids, cylinders, cones	
and spheres	Identify and name the special quadrilaterals presented in different
orientations	
Identify and describe shapes as 'regular' or 'irregular'	
Describe and compare features of shapes, including the special	
quadrilaterals	
Identify and draw lines of symmetry on shapes	

Angles 1 MA2-16MG

Identify 'perpendicular' lines and 'right angles' Angles 2 MA2-16MG

Draw and classify angles as acute, obtuse,
straight, reflex or a revolution

Content Cluster 28: Patterns can be created using shapes (copying, rotating, translating and reflecting)

Patterns and Algebra 1 MA2-8NA	Two-Dimensional Space	Two-Dimensional Space 2 MA2-15MG
Identify, continue, create, describe and	1 MA2-15MG	Combine common shapes to form other shapes
record increasing and decreasing number	Identify and draw lines of pymmetry on shapes	and record the arrangement split common shapes into other shapes and record the result
Patterns and Algebra 2 MA2-8NA		Use transformations to create and describe
Recognise, continue and describe number		symmetrical designs
patterns resulting from performing		Create and record tessellating designs
multiplication		

Angles 1 MA2-16MG

Identify 'perpendicular' lines and 'right angles'
Angles 2 MA2-16MG
Draw and classify angles as acute, obtuse, straight, reflex or a revolution

Stage 2 Content Clusters

Content Cluster 29: Locating and positioning is based on references (to points or one's self)

| Position 1 MA2-17MG | Position 2 MA2-17MG | Two-Dimensional Space 1 MA2-15MG |
| :--- | :--- | :--- | :--- | :--- |
| Use grid-referenced maps to locate and | Determine directions N, E, S, W and NE, SE, | Tdentify and name the special |
| describe positions and pathways | SW, NW, given one of the directions | |
| Draw simple maps, with and without a | | |
| grid | Interpret legends and directions on maps | quadrilaterals presented in different
 orientations |
| Sketch three-dimensional objects from | | |
| different views | | |

Content Cluster 30: Information can be collected, represented and analysed using numbers (collecting data)

| Data 1 MA2-18SP | Data 2 MA2-18SP | Chance 1 MA2-19SP |
| :--- | :--- | :--- | :--- |
| Plan methods for data collection | Select, trial and refine methods for data | |
| Interpret and compare data displays | collection, including survey questions and
 recording sheets
 Identify and describe possible 'outcomes'
 of chance experiments
 Predict and record all possible
 combinations in a chance situation
 displays | Cond record a range of mental
 Condrategies for addition and subtraction
 of two-, three-, four-and five-digit
 compare predicted with actual results |

Content Cluster 31: Information can be presented visually to convey meaning (data representations)				
Data 1 MA2-18SP Collect data, organise into categories and create displays using lists, tables, picture graphs and simple column graphs (one-to-one correspondence)	Data 2 MA2-18SP Construct data displays, including tables, and column graphs and picture graphs of many-to-one correspondence	Chance 1 MA2-19SP Conduct chance experiments and compare predicted with actual results	Angles 1 MA2-16MG Identify 'perpendicular' lines and 'right angles'	Length 2 MA2-9MG Select and use appropriate scaled instruments and units to measure and compare lengths

Stage 2 Content Clusters

Content Cluster 32: Events can be predicted, measured, and discussed based on chance

Chance 1 MA2-19SP Conduct chance experiments and compare predicted with actual results	Chance 2 MA2-19SP Describe possible everyday events and order their chances of occurring Identify everyday events where one occurring cannot happen if the other happens Identify events where the chance of one occurring will not be affected by the occurrence of the other	Data 2 MA2-18SP Select, trial and refine methods for data collection, including survey questions and recording sheets	Addition and Subtraction 1 MA2-5NA Use and record a range of mental strategies for addition and subtraction of two-, three- and four- digit numbers

[^0]: Multiplication and Division 1 MA2-6NA
 Use mental strategies to multiply one-digit numbers by multiples of 10
 Use and record a range of mental strategies for multiplication of two single-digit numbers
 Multiplication and Division 2 MA2-6NA
 Recall and use multiplication facts up to 10×10 with automaticity
 Relate multiplication facts to their inverse division facts
 Use and record a range of mental and informal written strategies for multiplication and division of two-digit numbers by a one-digit operator
 Use mental strategies and informal recording methods for division with remainders

