Content Clusters - Stage 3

Scope and sequencing by conceptual understanding

This is the scope... you create the sequence.
In this resource I provide possible ways of how groups of outcomes and their key ideas can be sequenced together based on the concepts they address. These are just examples and is not an exhaustive list of the clusters you can use to make connections across mathematics. I have used
 the syllabus outcomes, sub strands and the mathematics key ideas document. When teaching for conceptual understanding (not just the knowledge of each sub strand) we need to make clear how the pieces of the mathematical puzzle fit together. To do this, our planning needs to reflect this belief - that mathematics is a complex web of interrelated ideas. For ideas on what these links are, see my Linkages across the syllabus document on the resources section of our website.

The scope of what we teach is described in the syllabus (this is the constant), the sequence of what and how we teach mathematics is a decision for individual teachers (this is the variable). These clusters can be used to create meaningful sequences of learning that focus on concepts and programs that still address common sub strands (across grades or classes) but allow for individual teachers to add additional key ideas or focus on specific aspects of the cluster that students either have misconceptions around or are developing conceptual understanding in. The clusters are numbered but are not written in teaching order. These clusters may be added to or updated in the future and newer versions will be released.

Primary Learning

These clusters highlight the concept or main idea that ties each group of outcomes together, assisting teachers in making sense and meaning of the mathematics to students. When we think about the concepts or understandings first, we can think about what misconceptions students may have or what aspects of that concept they need next to connect their prior knowledge (the known) to create new knowledge (the unknown). The image to the right sourced from NZMaths, is based on Pirie and Kieren's growth in understanding model of the 'back and forth' nature of how students develop understanding from the known to the unknown.

A (scope and) sequence should:

- reflect the conceptual needs of your students at this point in time (they need to be evaluated and changed constantly)
- show evidence of connections across sub strands
- address connected content strands that deal with similar concepts within a lesson or within a sequence of lessons (e.g. over a few weeks)
- give teachers an overarching structure to guide immediate planning
- where possible, be written to address the upcoming half- term or term teaching and learning cycle

NESA states that for their registration process as evidence of compliance schools need to provide "scope and sequence of learning/units of work in relation to outcomes of NESA syllabus for each KLA for each Year" (page 10). Note: Most schools have a set, wider grade or school-based scope and sequence, you can use the content clusters within those parameters to guide what conceptual understandings you focus on for your students. They show where you can make connections between the sub strands that are listed in the school's scope and sequence.

Primary

Mind map of big ideas and smaller concept connections

To assist with how these clusters fit into the larger picture of mathematics, what many researchers refer to as 'Big ideas' or important concepts (Askew, 2013; Boaler, 2017; Charles, 2005; Clarke, Clarke \& Sullivan, 2012; Hurst \& Hurrell, 2014; Siemon, Bleckly \& Neal, 2012; Tout \& Spithill, 2015), I had a go at thinking holistically about "What are the main concepts or 'knowledge actions' students need?" Here is my 'messy' thinking, then a more organised way of linking these ideas together are illustrated on the following pages.

Big ideas simplified

I then thought about these important concepts 'big ideas', the smaller 'knowledge actions' within them, and how the Content Clusters fit under each of these concepts, noting that some clusters align with more than one big idea.

Primary

Big ideas and smaller 'knowledge actions'

Partitioning	Pattern		Comparing		Structure

These are just my ideas, Charles (2005) in his paper recognises that in developing deeper understanding of big ideas it might be helpful for teachers to "decide to modify or build your own" (p. 11). He also stated that:
"In working with colleagues on the development of this paper I am rather certain that it is not possible to get one set of Big Ideas and Understandings that all mathematicians and mathematics educators can agree on. Fortunately, I do not think it's necessary to reach a consensus in this regard. Use the Big Mathematical Ideas and Understandings presented here as a starting point for the conversations they are intended to initiate" (p. 9)

Primary Learning

Organisation of Stage 3 clusters (updated)

In this update I have reduced the repetition of clusters and now simply have all the clusters included once (they are no longer repeated under substrand headings). A few clusters have been revised (Cluster 3,11 and 19) to add in other connections that have arisen, specifically time concepts. Where appropriate, clusters have been given the same or similar names as concepts from other Stages to help make connections, show concepts that develop, and to assist with multi-stage planning. This version also includes a visual overview of the clusters mapped to the NSW outcomes they address to assist with planning and programming. A list of cluster titles is also included so teachers can see 'at a glance' the types of concepts the clusters explore. There is no set time for how long each cluster may take to explore with students, it could be 2 weeks per cluster or $3-4$ weeks. Clusters may be repeated, merged or omitted (please see these are examples). Decisions about how the clusters are arranged and implemented should be made by teachers at a school/grade/classroom level based on students' needs, abilities, and interests.

References

Askew, M. (2013). Big ideas in primary mathematics: Issues and directions. Perspectives in Education, 31(3), 5-18.
Charles, R. I., \& Carmel, C. A. (2005). Big ideas and understandings as the foundation for elementary and middle school mathematics. Journal of Mathematics Education, 7(3), 9-24.
Clarke, D. M., Clarke, D. J., \& Sullivan, P. (2012). Important ideas in mathematics: What are they and where do you get them? Australian Primary Mathematics Classroom, 17 (3), 13.
Hurst, C., \& Hurrell, D. (2014). Developing the big ideas of number. International Journal of Educational Studies in Mathematics, 1(2), 1-18.
Mathematics K-10 Syllabus outcomes © NSW Education Standards Authority (NESA) for and on behalf of the Crown in right of the State of New South Wales, 2012.
Pirie, S., \& Kieren, T. (1994). Growth in mathematical understanding: How can we characterise it and how can we represent it? Educational Studies in Mathematics, 26(2/3), 165-190. doi:10.1007/BF01273662
Siemon, D., Bleckly, J., \& Neal, D. (2012). Working with the big ideas in number and the Australian Curriculum: Mathematics. 2012). Engaging the Australian National Curriculum: Mathematics-Perspectives from the Field. Online Publication: Mathematics Education Research Group of Australasia, 19-45.

Tout, D. \& Spithill, J. (2015). Big Ideas in Mathematics Teaching. The Research Digest, QCT, 2015 (11)
What is mathematical beauty Jo Boaler (Youcubed)

Primary

Learning

Clusters mapped to big ideas

Partitioning

-Content Cluster 1: Place value -Content Cluster 5: Partitioning -Content Cluster 6: Flexible strategies for operating with numbers
-Content Cluster 7: A variety of strategies can be applied to solve word problems
-Content Cluster 8: Multiples can be visually represented as an array
-Content Cluster 11: Number relationships - converting
-Content Cluster 12: Money uses a many-to-one scale
-Content Cluster 17: A fraction is a number

Pattern

-Content Cluster 2: Representing numbers
-Content Cluster 8: Multiples can be visually represented as an array
-Content Cluster 13: The 'equals sign' means "the same as"
-Content Cluster 14: Numbers can be represented using pairs -Content Cluster 15: Patterns repeat or grow - Content Cluster 16: Patterns can be represented geometrically

Comparing

-Content Cluster 3: Comparing quantities - linear
-Content Cluster 4: Comparing quantities - area/volume/mass -Content Cluster 9:
Reasonableness of solutions can be checked
-Content Cluster 10: Benchmark numbers can be used to estimate quantities
-Content Cluster 11: Number relationships - converting -Content Cluster 13: The 'equals -Content Cluster 13: The 'equ
sign' means "the same as" -Content Cluster 19: Fractions as a measure
-Content Cluster 21: Time can be measured and compared -Content Cluster 22: Numbers and quantities can be compared using scale
-Content Cluster 25: Objects can be measured and compared -Content Cluster 26: Shapes can be measured and compared -Content Cluster 27: Shape and objects are classified
-Content Cluster 29: Information can be collected, analysed and interpreted
-Content Cluster 31: Events can be predicted, compared, and analysed

Structure

-Content Cluster 1: Place value -Content Cluster 2: Representing numbers
-Content Cluster 4: Comparing quantities - area/volume/mass -Content Cluster 5: Partitioning -Content Cluster 8: Multiples can be visually represented as an array
-Content Cluster 15: Patterns repeat or grow
-Content Cluster 16: Patterns can be represented geometrically -Content Cluster 23: Measurements are approximations
-Content Cluster 24: The multiplicative structure
Content Cluster 28: Grid references and coordinates can be used for locating and positioning
-Content Cluster 30: Information can be presented visually -Content Cluster 32: Probabilities of events can be described in a range of 0-1

Relationships

-Content Cluster 1: Place value - Content Cluster 6: Flexible strategies for operating with numbers
-Content Cluster 11: Number relationships - converting -Content Cluster 12: Money uses a many-to-one scale
-Content Cluster 13: The 'equals sign' means "the same as" -Content Cluster 14: Numbers can be represented using pairs Content Cluster 17: A fraction is a number
-Content Cluster 18: Fractions represent division
-Content Cluster 20: Fractions as an operator
-Content Cluster 22: Numbers and quantities can be compared using scale
-Content Cluster 28: Grid
references and coordinates can be used for locating and positioning
Content Cluster 32: Probabilities of events can be described in a range of 0-1

Primary

Learning

Stage 3 Overview of Content Clusters

Content Cluster 1: Place value (numbers can be regrouped and renamed - partitioning)
Content Cluster 2: Representing numbers (numbers can be represented, ordered and compared based on their place value)
Content Cluster 3: Comparing quantities - linear focus (numbers can be compared based on size and place value)
Content Cluster 4: Comparing quantities - area/volume/mass focus (numbers can be compared based on size and place value)
Content Cluster 5: Partitioning: Part-whole number knowledge (numbers can be partitioned in multiple ways)
Content Cluster 6: Flexible strategies for operating with numbers (numbers can be partitioned to assist with computation)
Content Cluster 7: A variety of strategies can be applied to solve word problems
Content Cluster 8: Multiples can be visually represented as an array ('for each' number structure)
Content Cluster 9: Reasonableness of solutions can be checked using estimation
Content Cluster 10: Benchmark numbers can be used to estimate quantities (how much/how many)
Content Cluster 11: Number relationships - converting (e.g. one thousand can be regrouped as 10 hundreds, 100 tens, or 1000 ones)
Content Cluster 12: Money uses a many-to-one scale (link to place value e.g. 100 cents is equal to $\$ 1$)
Content Cluster 13: The 'equals sign' means "the same as" (equality and inequality)
Content Cluster 14: Numbers can be represented using pairs to explore odd and even properties
Content Cluster 15: Patterns repeat or grow and future terms can be predicted (number structure)
Content Cluster 16: Patterns can be represented geometrically
Content Cluster 17: A fraction is a number (that represents a relationship between parts and the whole)
Content Cluster 18: Fractions represent division (number relationships)
Content Cluster 19: Fractions as a measure
Content Cluster 20: Fractions as an operator
Content Cluster 21: Time can be measured and compared in hours, minutes and seconds (relating 12 to 24 hour time)

Primary

 Learning
Stage 3 Overview of Content Clusters cont.

Content Cluster 22: Numbers and quantities can be compared using scale (links to proportionality)
Content Cluster 23: Measurements are approximations and can be represented using formal units
Content Cluster 24: The multiplicative structure (row and column) can be applied to measure area and volume
Content Cluster 25: Objects can be measured and compared through different representations
Content Cluster 26: Shapes can be measured and compared through different representations
Content Cluster 27: Shape and objects are classified based on their properties
Content Cluster 28: Grid references and coordinates can be used for locating and positioning
Content Cluster 29: Information can be collected, analysed and interpreted using numbers (collecting data)
Content Cluster 30: Information can be presented visually to convey meaning (data representations and exploring bias)
Content Cluster 31: Events can be predicted, compared, and analysed based on probability
Content Cluster 32: Probabilities of events can be described in a range of $0-1$ (probabilities as fractions of a whole)

Stage 3 Content Cluster outcome mapping

		sıəquinu 8u!̣uəəəədəy Z	цеәu!! - sə!!!!!uenb su!̣edmoว ع										,se әسes əч7, sueam ,ů!!s slenba, ə૫ı عโ								21 Time can be measured and						$\text { pә!!!!!sep əגe słכə!qo pue әdeus } \angle 乙$					
Whole Number MA3-4NA																																
Add \& Sub MA3-5NA																																
Multi \& Div MA3-6NA																																
Frac \& Dec MA3-7NA																																
Pat \& Alg MA3-8NA																																
$\begin{aligned} & \text { Length } \\ & \text { MA3-9MG } \end{aligned}$																																
$\begin{aligned} & \text { Area } \\ & \text { MA3-10MG } \\ & \hline \end{aligned}$																																
Vol \& Cap MA3-11MG																																
$\begin{aligned} & \text { Mass } \\ & \text { MA3-12MG } \end{aligned}$																																
Time MA3-13MG																																
$\begin{aligned} & \text { 3D Space } \\ & \text { MA3-14MG } \end{aligned}$																																
2D Space MA3-15MG																																
Angles MA3-16MG																																
Position MA3-17MG																																
Data MA3-18SP																																
Chance MA3-19SP																																

Stage 3 Content Clusters

Content Cluster 1: Place value (numbers can be regrouped and renamed - partitioning)

Whole Numbers 1 MA3-4NA

State the place value of digits in numbers of any size Record numbers of any size using expanded notation

Whole Numbers 2 MA3-4NA
Identify and describe prime and composite numbers

Fractions and Decimals 1 MA3-7NA
Apply the place value system to represent thousandths as decimals

Express mixed numerals as improper fractions and vice versa

Fractions and Decimals 2 MA3-7NA

Multiply and divide decimals by 10, 100 and 1000

Write fractions in their 'simplest form'

Content Cluster 2: Representing numbers (numbers can be represented, ordered and compared based on their place value)

Whole Numbers 1 MA34NA Read, write and order numbers of any size Whole Numbers 2 MA34NA Recognise the location of negative numbers in relation to zero on a number line	Fractions and Decimals 1 MA3-7NA Compare and order unit fractions with denominators $2,3,4,5,6,8,10,12$ and 100 Compare, order and represent decimals with up to three decimal places	Fractions and Decimals 2 MA3-7NA Represent, compare and order fractions with denominators $2,3,4,5,6,8,10,12$ and 100	Length 2 MA3-9MG Record lengths and distances using decimal notation to three decimal places	Volume and Capacity 2 MA3-11MG Record volumes and capacities using decimal notation to three decimal places	Mass 2 MA3-12MG Record mass using decimal notation to three decimal places

Stage 3 Content Clusters

Content Cluster 3: Comparing quantities - linear focus (numbers can be compared based on size and place value)

Fractions and Decimals 1 MA3-	Length 1 MA3-9MG	Length 2 MA3-9MG	Volume and Capacity 2 MA3-	Time 1MA3-13MG
7NA	Use the kilometre to measure lengths	Record lengths and	11MG	
Compare and order unit	and distances	distances using decimal	Record volumes and capacities	Convert between 12- and
fractions with denominators time				
$2,3,4,5,6,8,10,12$ and 100	Select and use appropriate	instruments and units to measure	places to three decimal	using decimal notation to three decimal places Compare, order and represent decimals with up to three
lengths	Record lengths and distances using decimal places	kilometres, metres, the abbreviations $\mathrm{km}, \mathrm{m}, \mathrm{cm}$ and mm	Convert between millilitres and litres	

Content Cluster 4: Comparing quantities - area/volume/mass focus (numbers can be compared based on size and place value)

Fractions and Decimals 1

MA3-7NA

Compare and order unit fractions with denominators

2, 3, 4, 5, 6, 8, 10, 12
and 100
Compare, order and represent decimals with up to three decimal places

Area 1 MA3-10MG
Recognise the need for square kilometres and hectares to measure area Record areas using the abbreviations km_{2} and ha

Volume and Capacity 1 MA3-

 11MGUse cubic centimetres and cubic metres to measure and estimate volumes

Select and use appropriate units to measure volume

Record volumes using the abbreviations cm_{3} and m_{3}

Mass 1 MA3-12MG

Recognise the need for tonnes to measure mass
Record masses using the abbreviations t, kg and g
Select and use appropriate instruments and units to measure mass
Solve problems involving mass
Mass 2 MA3-12MG
Record mass using decimal notation to three decimal places
Convert between tonnes, kilograms and grams

Stage 3 Content Clusters

Content Cluster 5: Partitioning: Part-whole number knowledge (numbers can be partitioned in multiple ways)			
Whole Numbers 1 MA3-4NA Record numbers of any size using expanded notation Whole Numbers 2 MA3-4NA Identify and describe prime and composite numbers	Fractions and Decimals 1 MA3-7NA Compare and order unit fractions with denominators $2,3,4,5,6,8,10,12$ and 100 Express mixed numerals as improper fractions and vice versa	Fractions and Decimals 2 MA3-7NA Represent, compare and order fractions with denominators $2,3,4,5,6,8,10,12$ and 100 Write fractions in their 'simplest form'	Multiplication and Division 1 MA3-6NA Use and record a range of mental and written strategies to divide numbers with three or more digits by a one-digit operator, including problems that result in a remainder

Content Cluster 6: Flexible strategies for operating with numbers (numbers can be partitioned to assist with computation)		
Addition and Subtraction 1 MA3-5NA Select and apply efficient mental, written and calculator strategies for addition and subtraction of numbers of any size	Multiplication and Division 1 MA3-6NA Use and record a range of mental and written strategies to multiply by one- and two-digit operators Use and record a range of mental and written strategies to divide numbers with three or more digits by a one-digit operator, including problems that result in a remainder	Fractions and Decimals 1 MA3-7NA Model and represent strategies to add and subtract fractions with the same denominator Fractions and Decimals 2 MA3-7NA Add and subtract fractions, included mixed numerals, with the same or related denominators Use mental, written and calculator strategies to add and subtract decimals with up to three decimal places Use mental, written and calculator strategies to multiply decimals by one- and two-digit whole numbers Use mental, written and calculator strategies to divide decimals by one-digit whole numbers

Primary

 Learning
Stage 3 Content Clusters

Content Cluster 7: A variety of strategies can be applied to solve word problems			
Addition and Subtraction 1	Addition and Subtraction 2 MA3-5NA	Multiplication and Division 1 MA3-6NA	Fractions and Decimals 2
MA3-5NA	Select and apply efficient mental, written and	Solve word problems and record the	MA3-7NA
Solve word problems and	calculator strategies to solve word problems	strategy used	Solve word problems involving
record the strategy used,	and record the strategy used	Multiplication and Division 2 MA3-6NA	fractions and decimals,
including problems involving		Select and apply efficient mental, written and money	
including money problems			
record the strategy used			

Content Cluster 8: Multiples can be visually represented as an array ('for each' number structure)

Multiplication and Division 1 MA3-6NA	Multiplication and Division 2 MA3-6NA	Area 1 MA3-10MG	Volume and	Patterns and Algebra 2
Use and record a range of mental and	Select and apply efficient mental,	Develop a strategy to find	Capacity 2 MA3-	MA3-8NA
written strategies to multiply by one- and	written and calculator strategies to	areas of rectangles (including	11MG	Continue, create, record
two-digit operators	solve word problems and record the	squares) and record the	Develop a strategy	and describe geometric
Use and record a range of mental and	strategy used	strategy in words	to find volumes of	and number patterns in
written strategies to divide numbers with		Area 2 MA3-10MG	rectangular prisms	words
three or more digits by a one-digit		Develop a strategy to find	and record the	
operator, including problems that result in a remainder		areas of triangles and record the strategy in words	strategy in words	

Stage 3 Content Clusters

Content Cluster 9: Reasonableness of solutions can be checked using estimation			
Addition and Subtraction 1 MA3-5NA Use estimation to check answers to calculations Solve word problems and record the strategy used, including problems involving money	Multiplication and Division 1 MA3-6NA Solve word problems and record the strategy used Use estimation to check answers to calculations	Multiplication and Division 2 MA3-6NA Select and apply efficient mental, written and calculator strategies to solve word problems and record the strategy used	Fractions and Decimals 2 MA3-7NA Solve word problems involving fractions and decimals, including money problems

Content Cluster 10: Benchmark numbers can be used to estimate quantities (how much/how many)

Addition and Subtraction 1 MA3-5NA Use estimation to check answers to calculations	Multiplication and Division 1 MA3-6NA Solve word problems and record the strategy used Use estimation to check answers to calculations	Fractions and Decimals 2 MA3-7NA Make connections between equivalent percentages, fractions and decimals	Volume and Capacity 1 MA3-11MG Use cubic centimetres and cubic metres to measure and estimate volumes Select and use appropriate units to measure volume	Angles 1 MA3-16MG Measure, compare and estimate angles in degrees (up to 360°) Record angle measurements using the symbol for degrees $\left({ }^{\circ}\right)$

Stage 3 Content Clusters

Content Cluster 11: Number relationships - converting (e.g. one thousand can be regrouped as 10 hundreds, 100 tens, or 1000 ones)					
Whole Numbers 1 MA3-4NA Read, write and order numbers of any size State the place value of digits in numbers of any size Record numbers of any size using expanded notation	Time 1MA3-13MG Convert between 12and 24-hour time Determine and compare the duration of events	Fractions and Decimals 1 MA3-7NA Apply the place value system to represent thousandths as decimals Fractions and Decimals 2 MA3-7NA Multiply and divide decimals by 10, 100 and 1000	Length 2 MA3-9MG Convert between kilometres, metres, centimetres and millimetres	Volume and Capacity 2 MA3-11MG Convert between millilitres and litres	Mass 2 MA3-12MG Convert between tonnes, kilograms and grams

Content Cluster 12: Money uses a many-to-one scale (link to place value e.g. 100 cents is equal to \$1)

Addition and Subtraction 1 MA3-5NA	Multiplication and Division 1 MA3-6NA	Fractions and Decimals 2 MA3-7NA
Solve word problems and record the strategy used,	Solve word problems and record the	Solve word problems involving fractions and decimals, including money
including problems involving money	strategy used Create a simple budget	Interpret remainders in division problems Use mental, written and calculator strategies to calculate 10\%, 25\%
and 50\% of quantities, including as discounts		

Content Cluster 13: The 'equals sign' means "the same as" (equality and inequality)						
Multiplication and Division 2 MA3-6NA	Patterns and Algebra 1 MA3-8NA	Fractions and Decimals 2 MA3-7NA				
Recognise and use grouping symbols	Find missing numbers in number sentences involving multiplication or division on one or both sides of the equals sign	Determine, generate and record equivalent fractions Make connections between equivalent percentages, fractions and decimals				

Primary

Learning

Stage 3 Content Clusters

Content Cluster 14: Numbers can be represented using pairs to explore odd and even properties

Patterns and Algebra 1 MA3-8NA
Identify, continue create and describe increasing and decreasing number patterns with fractions, decimals and whole numbers

Whole Numbers 1 MA3-4NA
Determine factors and multiples of whole numbers
Whole Numbers 2 MA3-4NA
Identify and describe prime and composite numbers
Model and describe square and triangular numbers

Content Cluster 15: Patterns repeat or grow and future terms can be predicted (number structure)				
Patterns and Algebra 1 MA38NA Identify, continue create and describe increasing and decreasing number patterns with fractions, decimals and whole numbers	Multiplication and Division 1 MA3-6NA Use and record a range of mental and written strategies to multiply by one- and two-digit operators	Fractions and Decimals 1 MA3-7NA Model and represent strategies to add and subtract fractions with the same denominator Fractions and Decimals 2 MA3-7NA Use mental, written and calculator strategies to add and subtract decimals with up to three decimal places Use mental, written and calculator strategies to multiply decimals by one- and two-digit whole numbers Use mental, written and calculator strategies to divide decimals by one-digit whole numbers	Whole Numbers 1 MA3-4NA Read, write and order numbers of any size Whole Numbers 2 MA3-4NA Model and describe square and triangular numbers	Addition and Subtraction 1 MA35NA Select and apply efficient mental, written and calculator strategies for addition and subtraction of numbers of any size

Stage 3 Content Clusters

Content Cluster 16: Patterns can be represented geometrically				
Patterns and Algebra 2 MA3-8NA Continue, create, record and describe geometric and number patterns in words Determine the rule for geometric and number patterns in words and use the rule to calculate values	Multiplication and Division 1 MA3-6NA Use and record a range of mental and written strategies to multiply by one- and two-digit operators	Two-Dimensional Space 1 MA3-15MG Classify and draw regular and irregular two-dimensional shapes from descriptions of their features Use the terms 'translate', 'reflect' and 'rotate' to describe transformations of shapes Two-Dimensional Space 2 MA3-15MG Identify, use and describe combinations of translations, reflections and rotations	Whole Numbers 1 MA3-4NA Read, write and order numbers of any size Whole Numbers 2 MA3-4NA Model and describe square and triangular numbers	Addition and Subtraction 1 MA35NA Select and apply efficient mental, written and calculator strategies for addition and subtraction of numbers of any size

Content Cluster 17: A fraction is a number (that represents a relationship between parts and the whole)

Fractions and Decimals 1 MA3-7NA	Fractions and Decimals 2 MA3-7NA
Compare and order unit fractions with	Represent, compare and order fractions with denominators
denominators 2, 3, 4, 5, 6, 8, 10, 12 and 100	$2,3,4,5,6,8,10,12$ and 100
Express mixed numerals as improper fractions	Determine, generate and record equivalent fractions
and vice versa	Write fractions in their 'simplest form'
	Make connections between equivalent percentages, fractions and
	decimals

[^0]
Stage 3 Content Clusters

Content Cluster 18: Fractions represent division (number relationships)

Fractions and Decimals 1 MA3-	Fractions and Decimals 2 MA3-7NA	Multiplication and Division 1 MA3-6NA	Patterns and Algebra 1 MA3-8NA
7NA	Represent, compare and order fractions	Use and record a range of mental and	Identify, continue create and describe
Compare and order unit fractions	with denominators 2, 3, 4,5,6,8,10,12	written strategies to divide numbers with	increasing and decreasing number patterns
with denominators	and 100	three or more digits by a one-digit operator,	with fractions, decimals and whole numbers
$2,3,4,5,6,8,10,12$ and 100	Determine, generate and record	including problems that result in a remainder	
Express mixed numerals as	equivalent fractions	Interpret remainders in division problems	
improper fractions and vice versa	Write fractions in their 'simplest form'		

Content Cluster 19: Fractions as a measure			
Fractions and Decimals 1 MA37NA Model and represent strategies to add and subtract fractions with the same denominator Fractions and Decimals 2 MA37NA Add and subtract fractions, included mixed numerals, with the same or related denominators	Length 1 MA3-9MG Record lengths and distances using the abbreviations $\mathrm{km}, \mathrm{m}, \mathrm{cm}$ and mm Find perimeters of common twodimensional shapes and record the strategy Length 2 MA3-9MG Convert between kilometres, metres, centimetres and millimetres Solve problems involving length and perimeter	Area 1 MA3-10MG Recognise the need for square kilometres and hectares to measure area Record areas using the abbreviations km_{2} and ha Develop a strategy to find areas of rectangles (including squares) and record the strategy in words Area 2 MA3-10MG Develop a strategy to find areas of triangles and record the strategy in words Solve problems involving areas of rectangles (including squares) and triangles	Time 1MA3-13MG Convert between 12- and 24-hour time Time 2 MA3-13MG Interpret and use timetables

Primary

Stage 3 Content Clusters

Content Cluster 20: Fractions as an operator			
Fractions and Decimals 2 MA3-7NA Multiply fractions by whole numbers Find a simple fraction of a quantity Solve word problems involving fractions and decimals, including money problems Make connections between equivalent percentages, fractions and decimals Use mental, written and calculator strategies to calculate $10 \%, 25 \%$ and 50% of quantities, including as discounts	Addition and Subtraction 1 MA35NA Solve word problems and record the strategy used, including problems involving money Create a simple budget	Multiplication and Division 1 MA3-6NA Use and record a range of mental and written strategies to multiply by one- and two-digit operators	Area 2 MA3-10MG Solve problems involving areas of rectangles (including squares) and triangles

Content Cluster 21: Time can be measured and compared in hours, minutes and seconds (relating 12 to 24 hour time)

Time 1MA3-13MG	Time 2 MA3-13MG	Fractions and Decimals 1 MA3-7NA	
Convert between 12- and 24-hour time	Interpret and use timetables	Addition and Subtraction 2 MA3-5NA Model and represent strategies to add and subtract fractions with the of events and apply efficient mental, written and same denominator	calculator strategies to solve word problems and record the strategy used

Primary

 Learning
Stage 3 Content Clusters

Multiplication and	Length 1 MA3-9MG	Position MA3-17MG	Data 1 MA3-18SP	Time 2 MA3-	Two-Dimensional
Division 1 MA3-6NA	Select and use appropriate	Use grid-referenced maps to	Construct data displays,	13MG	Space 1 MA3-
Use and record a	instruments and units to measure	locate and describe positions	including tables, column graphs,	Draw and	15MG
range of mental and	lengths	Follow a sequence of directions,	dot plots and line graphs,	interpret	Make and compare
written strategies to	Record lengths and distances using	including compass directions, to	appropriate for the data type	timelines using a given scale	enlargements of shapes/pictures
two-digit operators	the abbreviations $\mathrm{km}, \mathrm{m}, \mathrm{cm}$ and mm Length 2 MA3-9MG	find a particular location on a map Describe routes using landmarks	Describe and interpret data presented in tables, column	a given scale	shapes/pictures
	Convert between kilometres, metres, centimetres and millimetres	and directional language	graphs, dot plots and line graphs		

Content Cluster 23: Measurements are approximations and can be represented using formal units				
Length 1 MA3-9MG Record lengths and distances using the abbreviations km, m, cm and mm Length 2 MA3-9MG Record lengths and distances using decimal notation to three decimal places	Area 1 MA3-10MG Record areas using the abbreviations km 2 and ha	Volume and Capacity 1 MA311MG Record volumes using the abbreviations cm_{3} and m_{3} Volume and Capacity 2 MA211MG Record volumes and capacities using decimal notation to three decimal places Convert between millilitres and litres	Mass 1 MA3-12MG Recognise the need for tonnes to measure mass Record masses using the abbreviations t , kg and g Distinguish between 'gross mass' and 'net mass' Mass 2 MA3-12MG Record mass using decimal notation to three decimal places	Angles 1 MA3-16MG Recognise the need for formal units to measure angles Record angle measurements using the symbol for degrees (${ }^{\circ}$) Construct angles using a protractor (up to 360°) Describe angle size in degrees for each angle classification

Primary

Stage 3 Content Clusters

Content Cluster 24: The multiplicative structure (row and column) can be applied to measure area and volume

Multiplication and	Fraction and Decimals 2	Area 1 MA3-10MG	Volume and Capacity 2 MA3-	Three-Dimensional Space 2 MA3-
Division 1 MA3-6NA	MA3-7NA	Develop a strategy to find areas of	11MG	14MG
Use and record a range	Use mental, written and	rectangles (including squares) and	Develop a strategy to find	Construct prisms and pyramids
of mental and written	calculator strategies	record the strategy in words	volumes of rectangular prisms	using a variety of materials, and
strategies to multiply by	to multiply decimals by one-	Area 2 MA3-10MG	and record the strategy	given drawings from different
one- and two-digit operators	and two-digit whole numbers	Develop a strategy to find areas of triangles and record the strategy in words	in words	views

Content Cluster 25: Objects can be measured and compared through different representations

Three-dimensional Space 1 MA3-14MG	Volume and Capacity 1 MA3-11MG
Describe and compare properties of prisms and	Use cubic centimetres and cubic metres to measure and
pyramids in terms of their faces, edges and vertices	estimate volumes
Connect three-dimensional objects with their nets	Select and use appropriate units to measure volume
Three-Dimensional Space 2 MA3-14MG	Volume and Capacity 2 MA3-11MG
Construct prisms and pyramids using a variety of	Connect volume and capacity and their units
materials, and given drawings from different views	of measurement Develop a strategy to find volumes of rectangular prisms and record the strategy in words

Multiplication and Division 1 MA3-6NA

Use and record a range of mental and written strategies to multiply by one- and two-digit operators

Primary

Stage 3 Content Clusters

Content Cluster 26: Shapes can be measured and compared through different representations			
Two-Dimensional Space 1 MA3-15MG Identify, name and draw right-angled, equilateral, isosceles and scalene triangles Compare and describe side properties of the special quadrilaterals and special triangles Explore angle properties of the special quadrilaterals and special triangles	Area 1 MA3-10MG Develop a strategy to find areas of rectangles (including squares) and record the strategy in words Area 2 MA3-10MG Develop a strategy to find areas of triangles and record the strategy in words	Length 1 MA3-9MG Find perimeters of common twodimensional shapes and record the strategy	Angles 1 MA3-16MG Measure, compare and estimate angles in degrees (up to 360°) Describe angle size in degrees for each angle classification

Content Cluster 27: Shape and objects are classified based on their properties

Three-Dimensional Space 1 MA3-

 14MGName prisms and pyramids according to the shape of their 'base' Recognise that prisms have a uniform cross-section and pyramids do not
Describe and compare properties of prisms and pyramids in terms of their faces, edges and vertices

Two-Dimensional Space 1 MA3-15MG

Identify, name and draw right-angled, equilateral, isosceles and scalene triangles

Compare and describe side properties of the special quadrilaterals and special triangles

Explore angle properties of the special quadrilaterals and special triangles
Classify and draw regular and irregular two-dimensional
shapes from descriptions of their features
Identify line and rotational symmetries

Two-Dimensional Space 2 MA3-

 15MGIdentify, describe, compare and draw diagonals of two-dimensional shapes

Identify and name parts of circles

Angles 2 MA3-16MG

Identify and name angle types formed by the intersection of straight lines, including 'angles on a straight line', 'angles at a point' and 'vertically opposite angles
Use known angle results to find unknown angles in diagrams

Stage 3 Content Clusters

Content Cluster 28: Grid references and coordinates can be used for locating and positioning			
Position 1 MA3-17MG Use grid-referenced maps to locate and describe positions	Patterns and Algebra 2 MA38NA Locate and record the coordinates of points in all four quadrants of the Cartesian plane	Two-Dimensional Space 1 MA3-15MG Use the terms 'translate', 'reflect' and 'rotate' to describe transformations of shapes Make and compare enlargements of shapes/pictures Two-Dimensional Space 2 MA3-15MG Identify, use and describe combinations of translations, reflections and rotations	Three-Dimensional Space 2 MA314MG Construct prisms and pyramids using a variety of materials, and given drawings from different views

Data 1 MA3-18SP Collect categorical and numerical data by observation and by survey Describe and interpret data presented in tables, column graphs, dot plots and line graphs	Data 2 MA3-18SP	Chance 1 MA3-19SP	Addition and Subtraction	Multiplication and Division
	Interpret and create two-way	List outcomes of chance experiments	1 MA3-5NA	1 MA3-6NA
	tables	involving equally likely outcomes	Select and apply efficient	Use and record a range
	Interpret side-by-side column	Chance 2 MA3-19SP	mental, written	of mental and written
	graphs	Conduct chance experiments with	and calculator strategies	strategies to divide
	Compare a range of data displays to determine the most appropriate display for particular sets of data	both small and large numbers of trials	for addition and subtraction of numbers of any size	numbers with three or more digits by a one-digit operator
	Interpret and critically evaluate data presented in digital media and elsewhere			

Stage 3 Content Clusters

Content Cluster 30: Information can be presented visually to convey meaning (data representations and exploring bias)			
Data 1 MA3-18SP	Data 2 MA3-18SP	Angles 1 MA3-16MG	
Construct data displays, including tables,	Interpret and create two-way tables column graphs, dot plots and line graphs, appropriate for the data type Compare a range of data displays to determine the most appropriate display for particular sets of data	(up to 360 $)$	Length 1 MA3-9MG
Select and use appropriate			
instruments and units to measure			
lengths			

Content Cluster 31: Events can be predicted, compared, and analysed based on probability

Chance 1 MA3-19SP
List outcomes of chance experiments
involving equally likely outcomes

Chance 2 MA3-19SP
Compare observed frequencies in chance experiments with expected frequencies Conduct chance experiments with both small
and large numbers of trials

Data 1 MA3-18SP
Collect categorical and numerical data by observation and by survey
Describe and interpret data presented in tables, column graphs, dot plots and line graphs

Content Cluster 32: Probabilities of events can be described in a range of 0-1 (probabilities as fractions of a whole)

Chance 1 MA3-19SP	Chance 2 MA3-19SP	Data 1 MA3-18SP	Fractions and Decimals 2 MA3-7NA
Represent probabilities using fractions	Compare observed frequencies in chance	Collect categorical and numerical	
Recognise that probabilities range from			
0 to 1	experiments with expected frequencies Represent probabilities using fractions, compare and order fractions with decimals and percentages	data by observation and by survey	denominators 2,3,4,5,6,8,10,12 and 100
Solve word problems involving fractions and			
decimals			

[^0]: Whole Numbers 2 MA3-4NA
 Read, write and order numbers of any
 size
 State the place value of digits in numbers of any size
 Record numbers of any size using expanded notation

